
Neptune

Mutual Audit

| security

October 13, 2022

This security assessment was prepared by

OpenZeppelin.

Table of Contents

Table of Contents __ 2

Summary ___ 4

Scope __ 5

System overview ___ 6

Components 6

System-level features 9

Privileged Roles ___ 10

Findings __ 12

High Severity __ 13

H-01 Conflated staking pool reward balances 13

H-02 Risk of insufficient liquidity 13

Medium Severity ___ 14

M-01 Unenforced staking requirement 14

M-02 Potential token transfer from unrelated account 14

M-03 Incorrect policy fee 15

M-04 Parallel access control 15

M-05 Unable to unstake after finalization 16

M-06 Unexpected deployer privileges 16

Low Severity __ 18

L-01 Able to close non-empty staking pool 18

L-02 Collision between constants 18

L-03 Implicit timing assumptions 18

L-04 Imprecise bounds 19

L-05 Incorrect NPM threshold 19

L-06 Lack of input validation 19

L-07 Missing event parameter 20

L-08 No unstaking window 20

L-09 Protocol administrator needs to handle external tokens 21

L-10 The info parameter might lose information about an IPFS hash 21

L-11 Incorrect individual liquidity share 22

L-12 Variable outside store 22

Neptune Mutual Audit − Table of Contents − 2

Notes & Additional Information __ 23

N-01 transfer and send calls are no longer considered best practice 23

N-02 Anyone can temporarily DoS a fresh vault 23

N-03 Commit-Reveal voting 24

N-04 Copied in dependencies 24

N-05 Docstrings not following NatSpec 24

N-06 Duplicate modifier 25

N-07 Duplicate token supply tracking 25

N-08 Excessive indirection and coupling 25

N-09 Incomplete deletion 26

N-10 Incorrect array size 26

N-11 Misleading comments 27

N-12 Naming issues hinder code understanding and readability 27

N-13 Product status needs not be incident specific 28

N-14 Repeated pause validation 28

N-15 Risks associated with the price oracle 28

N-16 Typos 29

N-17 Unexplained dead code 29

N-18 Unnecessary complex code 29

N-19 Unnecessary coupling 29

N-20 Unused imports 30

Neptune Mutual Audit − Table of Contents − 3

Type DeFi

Timeline From 2022-07-18

To 2022-08-22

Languages Solidity

Total Issues 40 (29 resolved)

Critical Severity

Issues

0 (0 resolved)

High Severity

Issues

2 (2 resolved)

Medium Severity

Issues

6 (5 resolved)

Low Severity Issues 12 (11 resolved)

Notes & Additional

Information

20 (11 resolved)

Summary

Neptune Mutual Audit − Summary − 4

Scope

We audited the "neptune-mutual-blue/protocol" repository at the

"73fc82fbe0d1388867b7df669983fe42760daeb1" commit.

In scope were the following contracts:

- contracts/core/token/NPM.sol

- contracts/core/Protocol.sol

- contracts/core/cxToken/cxToken.sol

- contracts/core/governance/Witness.sol

- contracts/core/governance/Governance.sol

- contracts/core/governance/resolution/Finalization.sol

- contracts/core/governance/resolution/Unstakable.sol

- contracts/core/governance/resolution/Resolution.sol

- contracts/core/governance/resolution/Resolvable.sol

- contracts/core/governance/Reporter.sol

- contracts/core/ProtoBase.sol

- contracts/core/delegates/VaultDelegateWithFlashLoan.sol

- contracts/core/delegates/VaultDelegate.sol

- contracts/core/delegates/VaultDelegateBase.sol

- contracts/core/liquidity/VaultLiquidity.sol

- contracts/core/liquidity/WithFlashLoan.sol

- contracts/core/liquidity/VaultFactory.sol

- contracts/core/liquidity/Vault.sol

- contracts/core/liquidity/VaultBase.sol

- contracts/core/liquidity/VaultStrategy.sol

- contracts/core/policy/Policy.sol

- contracts/core/claims/Processor.sol

- contracts/core/store/Store.sol

- contracts/core/store/StoreBase.sol

- contracts/libraries/StakingPoolLibV1.sol

- contracts/libraries/CoverUtilV1.sol

- contracts/libraries/StakingPoolCoreLibV1.sol

- contracts/libraries/GovernanceUtilV1.sol

- contracts/libraries/BondPoolLibV1.sol

- contracts/libraries/RoutineInvokerLibV1.sol

- contracts/libraries/StrategyLibV1.sol

- contracts/libraries/PolicyHelperV1.sol

- contracts/libraries/AccessControlLibV1.sol

- contracts/libraries/ValidationLibV1.sol

- contracts/libraries/VaultLibV1.sol

- contracts/pool/Bond/BondPool.sol

- contracts/pool/Bond/BondPoolBase.sol

- contracts/pool/Staking/StakingPoolInfo.sol

- contracts/pool/Staking/StakingPools.sol

- contracts/pool/Staking/StakingPoolBase.sol

Neptune Mutual Audit − Scope − 5

https://github.com/neptune-mutual-blue/protocol
https://github.com/neptune-mutual-blue/protocol/commit/73fc82fbe0d1388867b7df669983fe42760daeb1

- contracts/pool/Staking/StakingPoolReward.sol

- oracle/contracts/NpmPriceOracle.sol

Not all components of the system were in-scope. Most notably, the cover lifecycle and

strategies were not in-scope but interact closely with many in-scope functions. We assumed

the out-of-scope contracts work as documented and mainly focused on in-scope contracts.

Despite the restricted scope, we did find certain issues in out-of-scope files and included them

in the report accordingly.

System overview

The main purpose of the system is to provide parametric insurance products with focus on

covering smart contract hacks.

At a high level, the core system comprises the protocol, storage, NPM token, vaults, policies,

cover tokens, incident reporting and claim processor. In addition there are bonding, staking,

reassurance, price oracle and strategies. Below, we describe each component and some key

system-level features.

Components

Protocol

The Protocol contract is used for role-based access control and exposes functions to

upgrade the system.

Storage

The system uses the Eternal Storage pattern for upgradeability so almost all variables are

stored in the Store contract except for reentrancyGuard , Ownable , and a few others.

NPM token

NPM token is a pausable ERC20 token with a total supply cap and the owner has the ability to

mint tokens under that cap.

Neptune Mutual Audit − System overview − 6

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/liquidity/strategies
https://fravoll.github.io/solidity-patterns/eternal_storage.html

Vaults

When a new cover is created, a fresh vault will be deployed by the VaultFactory . Vault

contracts store the stablecoin funds associated with the cover. Vaults are not upgradeable,

thus most core logic is contained in vault delegate, which is upgradeable.

Insurance underwriters can add liquidity to vaults in exchange for Proof-of-deposit (POD)

tokens, while having NPM staked at the same time. After an incident, claims will be transferred

out from the vault to the claim processor. In order to create additional revenue for liquidity

providers, vaults also (1) act as an ERC3156 flash loan lender and (2) execute investment

strategies that provide a portion of available liquidity to protocols like Aave and Compound.

Separate strategy-specific contracts can move liquidity out from vaults to lending protocols.

There is a limited time window where liquidity can be withdrawn. Additionally, any deposit

prevents subsequent withdrawals for a few blocks. However, liquidity providers can still exit

their position by selling the POD tokens, which are freely transferable.

Policies

One can purchase a cover policy via the Policy contract. Based on the chosen amount and

duration, a fee will be computed and required to be deposited in exchange for the

corresponding amount of a cover token. The particular cover token depends on the expiry

month of the policy. It's worth noting that you cannot purchase a cover for the future - it will

start immediately after a pre-configured lag. The PolicyAdmin configures policies.

Cover tokens

Cover tokens are non-transferrable ERC20 tokens represented by the cxToken contract.

cxToken is redeemable for an equivalent amount of stablecoin payout in the case of a

resolved incident before its expiry date at the end of a month. There is a lag period from the

date of purchase to the effective cover start date in order to prevent attackers buying covers

right before/after a hack and emptying the liquidity. This means that freshly bought tokens are

not redeemable immediately.

Incident reporting

Anyone can report an incident by staking a minimum required amount of NPM tokens. This

changes the normal product status which stops any policy purchase and withdraws liquidity

from strategies. During the reporting period, anyone can refute a claimed incident by staking an

equivalent amount of required NPM tokens. This results in two competing camps of votes

where any witness can add their vote to either camp via staking any amount of NPM tokens. A

Neptune Mutual Audit − System overview − 7

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/delegates/VaultDelegate.sol
https://eips.ethereum.org/EIPS/eip-3156

natural resolution will come about at the end of the reporting period with the majority votes.

However, the protocol reserves the right to overwrite any voting result by an emergency

resolution.

To incentivize fast submissions the system pays an additional reward to the first reporter of the

winning camp. Importantly, the incident date for the purposes of policy coverage is the time of

the first report, not when the alleged incident occurred. This means that some policies may

expire after the real incident but before the first report, which is why timely reporting is crucial.

We would like to highlight that the attacker can be the reporter if they are willing to. In

principle, nobody can report faster than the attacker as the attacker knows when the

incident happens in advance. This does not break the mechanics. This gives the

attacker a non-stolen reward in addition to stolen funds, although arguably, the reward

may be considered justified payment for reporting the attack.

Once the incident is resolved, the losing camp loses their entire stake. Part of this stake is

burned and the remaining part is distributed among the winning camp. There is a deadline for

winning stakers to claim their rewards (their share of the losing camp's stake). After this

deadline, they will still be able to retrieve their original stake but the corresponding rewards will

remain in the system until a recovery agent withdraws them.

If the incident was deemed to have been correctly reported, funds are transferred to the claim

processor contract for distribution to policy holders.

Incidents can only be reported and resolved one at a time. This has some interesting

implications. In particular, if an invalid report is raised, it would prevent valid reports until it is

resolved. Moreover, voters are expected to independently ascertain whether an incident has

occurred. This may create additional confusion where some votes occur before an incident,

while others occur afterward. The privileged roles in the system are expected to use their

powers to minimize and recover from such inconsistencies when they arise.

Claim processor

The claim processor receives funds from a vault and handles payouts during a pre-configured

claim period. During each claim, a proportion of the payout is transferred to the treasury as a

platform fee, out of which, a commission is rewarded to the first reporter. The protocol can

deny claims to any suspicious account during the reporting period of a particular incident via

blacklisting.

Neptune Mutual Audit − System overview − 8

Price oracle

The price oracle derives a TWAP-based NPM token price from a UniswapV2 NPM-Stablecoin

pool. It calculates the NPM-Stablecoin LP token price by the formula described in Fair

Uniswap's LP Token Pricing. This is used solely to compute the bonding price of the LP token

in terms of NPM tokens.

Bonding

A bonding pool is used to bootstrap protocol-owned liquidity. Users sell their UniswapV2 NPM-

Stablecoin LP tokens to the protocol in exchange for discounted and locked NPM tokens. The

LP tokens are transferred to an address controlled by the protocol owners who can hold or

redeem the tokens. Obtained stablecoin liquidity can be used to support cover pools and the

NPM liquidity may recirculate back to the bonding pool however this is not enforced by the

code.

NPM and POD staking

NPM and POD staking pools are created to encourage participants to obtain and hold those

tokens. Any project can pre-fund a staking pool with its own ERC20 reward tokens that will be

released to stakers at a fixed rate until the rewards are depleted.

Reassurance

The reassurance fund is provided by cover owners to strengthen the confidence in the cover's

safety. If an incident occurs, the funds will be used to mitigate the losses of liquidity providers.

It also reduces the premium paid by cover buyers.

System-level features

There are several system-level features.

Pausability

Each contract is meant to be pausable. Pausing occurs in two places: (1) the storage and (2)

the Protocol contract. It should be noted that while paused, the protocol will stop updating,

but any time-based logic is unaffected. This means that, in addition to freezing funds, it could

influence the outcome of incident reports, insurance claims, or reward assignments.

Neptune Mutual Audit − System overview − 9

https://blog.alphaventuredao.io/fair-lp-token-pricing
https://blog.alphaventuredao.io/fair-lp-token-pricing

Recoverability

The recovery agent can transfer ETH or any ERC20 token from any contract, including Vault

and StakingPool that hold substantial funds.

This design can mitigate many potential vulnerabilities. In particular, any funds that cannot be

withdrawn immediately can be managed by the recovery agent.

Privileged Roles

The system has a large number of very privileged roles, as described in the Security document.

Users must trust the holders to exercise their powers wisely and fairly and to protect their

corresponding cryptographic keys.

Administrator

This is the NS_ROLES_ADMIN role, which grants all other roles. This gives it complete control

over the system.

Cover manager

This is the NS_ROLES_COVER_MANAGER role, which configures various cover parameters,

including the claim period, the reporting stake requirements, the reporting commission, the

policy fee rates, etc. It also includes the ability to blacklist particular addresses from making

claims.

Cover owner

This role can add new products to an existing cover and reassurance funds to covers they

own. It can also update the user whitelist for a cover. However, the cover owner cannot decide

whether the whitelist is enabled or not.

Governance admin

This is the NS_ROLES_GOVERNANCE_ADMIN role, which can overrule any resolution within the

cooldown period. It can also configure the cooldown period and disable cover purchases.

Neptune Mutual Audit − Privileged Roles − 10

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels

Governance agent

This is the NS_ROLES_GOVERNANCE_AGENT role, which resolves and finalizes reports to

advance the reporting process through its phases. Note that this means that incident

resolutions can be stalled by an inactive governance agent. It can also update the list of cover

creators.

Liquidity manager

This is the NS_ROLES_LIQUIDITY_MANAGER role, which can update the list of strategies and

configure various parameters related to strategies. It can also transfer reassurance funds to

vaults when needed to payout claims.

It's worth noting that adding a strategy does not make it immediately functional. The strategy

must also be granted the Protocol Member role by an Upgrade Agent or Administrator.

NPM token owner

This role can mint new NPM tokens to any address within the total supply cap. It can also

pause the NPM token and recover mistakenly sent funds from it.

Store owner

This role can pause and unpause the Store contract and recover mistakenly sent funds from

it.

Pause agent

This is the NS_ROLES_PAUSE_AGENT role, which can pause the Protocol contract.

Protocol member

Every contract in the system must have this pseudo-role in order to have write access to

storage. With this role they can write to the Store contract directly, giving them complete

control over the system. The protocol members are set by the upgrade agent.

Recovery agent

This is the NS_ROLES_RECOVERY_AGENT role, which can transfer all ETH and ERC20 tokens

from any contract, including contracts that store user funds like Vault and StakingPool .

Neptune Mutual Audit − Privileged Roles − 11

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels

Unpause agent

This is the NS_ROLES_UNPAUSE_AGENT role, which can unpause the Protocol contract.

Upgrade agent

This is the NS_ROLES_UPGRADE_AGENT role, which can add or remove contracts from the

protocol, effectively granting or revoking the Protocol member role, and replace the logic

contracts with new ones. Thus, it has complete control over the system.

Cover creator

This role can create new covers and products.

Findings

Here we present our findings.

Neptune Mutual Audit − Findings − 12

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md#access-levels

High Severity

H-01 Conflated staking pool reward balances

Each staking pool specifies its own reward token and corresponding balance in the same

aggregate contract. When retrieving this value, the token balance of the aggregate contract is

returned. Since there could be multiple staking pools with the same reward token, this could

include balances from other pools. It could also include any reward token balances that were

directly sent to the contract.

Moreover, current user rewards could also be overstated, which would prevent users from

claiming the last rewards. Since rewards are claimed when withdrawing stake, anyone could

prevent users from unstaking by directly sending reward tokens to the staking pool contract.

Any non-zero amount would be sufficient to trigger this scenario. If this occurs, a recovery

agent could still retrieve the funds from the aggregate pool contract and distribute them as

desired, although it is not clear how they should distribute the remaining rewards.

Consider reading the pool balance from the saved record.

Update: Fixed as of commit 8b660b13cf9fbcde0bfedb3819dbb670ba74b09a in pull

request #156.

H-02 Risk of insufficient liquidity

When purchasing a cover, the protocol ensures it has enough funds to pay out all potential

claimants. The computation of the existing commitments includes all covers expiring in the

next 3 months, since this is the maximum policy duration. However, some covers may expire in

the fourth month and these would be excluded from the calculation. Therefore, the protocol

could sell more insurance than it can support, and some valid claimants may be unable to

retrieve their payment.

Consider including the extra month in the commitment computation.

Update: Fixed as of commit 63fce22c67f72cf090ffa124784a3d92935e2d66 in pull

request #136.

Neptune Mutual Audit − High Severity − 13

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolCoreLibV1.sol#L210-L214
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolLibV1.sol#L158
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolLibV1.sol#L178
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolLibV1.sol#L212
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolLibV1.sol#L212
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolLibV1.sol#L298
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Recoverable.sol#L49
https://github.com/neptune-mutual-blue/protocol/pull/156
https://github.com/neptune-mutual-blue/protocol/pull/156
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/PolicyHelperV1.sol#L50
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L477-L481
https://github.com/neptune-mutual-blue/protocol/blob/133bc8a4157d4f27471b0cf43ac0ce2b51bb5e5a/contracts/libraries/ProtoUtilV1.sol#L14
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L609
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L609
https://github.com/neptune-mutual-blue/protocol/pull/136
https://github.com/neptune-mutual-blue/protocol/pull/136

Medium Severity

M-01 Unenforced staking requirement

Adding liquidity requires a liquidity provider to have at least a minimum amount of NPM tokens

staked in the vault.

However, the purpose and usefulness of this requirement is unclear, since it can be bypassed.

In particular:

there is no relationship between the amount of PODs created and the size of the stake

PODs are transferable to unstaked users, so users can provide liquidity without staking

staked users can exit their entire staked amount without redeeming any PODs by

calling removeLiquidity with parameters podsToRedeem = 0 ,

npmStakeToRemove = amount , and exit = 1 ; the exit = 1 is crucial as it

allows execution of line 234 of VaultLibV1.sol

Consider documenting and enforcing the intended relationship between NPM staking and

liquidity provision.

Update: Acknowledged, not fixed. The Neptune team stated:

Although we plan to redo the staking requirement logic from scratch, we wish to

consider this risk as acceptable for the time being.

M-02 Potential token transfer from unrelated

account

The CoverReassurance contract contains a mechanism to retrieve funds from an arbitrary

account, as long as the account has provided a non-zero allowance. This would occur

whenever a cover owner can front-run another cover owner's reassurance transaction, allowing

them to redirect the funds to their own cover.

Even without front-running, there are multiple reasons an account may have a non-zero

allowance, including:

Their addReassurance transaction failed and they didn't revoke the allowance.

•

•

•

•

Neptune Mutual Audit − Medium Severity − 14

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/VaultLibV1.sol#L151
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/liquidity/VaultLiquidity.sol#L113-L118
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/liquidity/VaultLiquidity.sol#L113-L118
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/VaultLibV1.sol#L234
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/CoverReassurance.sol#L66

They made an unlimited approval.

They approved a higher allowance than the amount they eventually transferred.

In all cases, an attacker can retrieve those funds and direct them towards a cover.

A recovery agent could still retrieve the funds from the CoverReassurance contract and

distribute them as desired, although it is unclear how they would distinguish a front-running

attack from one where a cover owner legitimately transfers funds from a different account.

Consider retrieving the tokens from the message sender rather than an arbitrary account

parameter.

Update: Fixed as of commit ca55b69c5cdd80bcccdc83dd5d569933f450fa6a in pull

request #139.

M-03 Incorrect policy fee

There are two discrepancies when calculating a policy fee rate:

It is always strictly higher than the configured floor.

The amount of days charged does not account for a non-standard coverage lag period.

Consider updating the calculation accordingly.

Update: Fixed as of commit 84a6fc3167adfb61b6f16666f0ba422b60bc0b2c in pull

request #159 and commit 4b929c274100a981107e35d40fbf5b57fabc9be4 in pull

request #196. The Neptune team have chosen not to address the first bullet.

M-04 Parallel access control

The Protocol contract inherits the OpenZeppelin AccessControl contract, and uses it to

define the role hierarchy. It also provides a mechanism for the administrator to grant an existing

role to a new address. However, this mechanism functions in parallel to the inherited

mechanism for granting roles. This leads to two inconsistencies:

A role administrator can bypass the whenNotPaused restriction by using the inherited

mechanism.

The NS_ROLES_ADMIN can use the new mechanism to grant the

NS_ROLES_GOVERNANCE_AGENT , even though they do not directly administer that role.

•

•

•

•

•

•

Neptune Mutual Audit − Medium Severity − 15

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Recoverable.sol#L49
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/CoverReassurance.sol#L53
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/CoverReassurance.sol#L53
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/CoverReassurance.sol#L53
https://github.com/neptune-mutual-blue/protocol/pull/139
https://github.com/neptune-mutual-blue/protocol/pull/139
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/PolicyHelperV1.sol#L55-L57
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/PolicyHelperV1.sol#L64
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/PolicyHelperV1.sol#L259
https://github.com/neptune-mutual-blue/protocol/pull/159
https://github.com/neptune-mutual-blue/protocol/pull/159
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/ProtoBase.sol#L18
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L283
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L283
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.4/contracts/access/AccessControl.sol#L130
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.4/contracts/access/AccessControl.sol#L130
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/ProtoBase.sol#L23

Consider ensuring consistency between the two mechanisms. Depending on the desired

outcome, this could involve relying on the original mechanism, changing the role relationships,

or overriding the inherited grantRole function.

Update: Fixed as of commit 1d54d66493e3109c12d610f0231529cbd65b5ba9 in pull

request #157 and commit 4b929c274100a981107e35d40fbf5b57fabc9be4 in pull

request #196.

M-05 Unable to unstake after finalization

Reporters on the winning camp can unstake their tokens even after the incident has been

finalized, albeit with no reward. However, the resolution deadline is not specific to a particular

incident and is reset to 0 during finalization. Since the deadline is checked during unstaking,

the operation will fail. This means that some successful NPM stakers will be unable to retrieve

their funds.

In this scenario, a recovery agent could still retrieve the funds from the Resolution contract

and distribute them as desired.

Consider recording the resolution deadline with the incident date so it does not need to be

cleared during finalization.

Update: Fixed as of commit 6cb6b6064eca18cccee8114cbcefd2455c286ce9 in pull

request #132 and commit 4b929c274100a981107e35d40fbf5b57fabc9be4 in pull

request #196.

M-06 Unexpected deployer privileges

The deployer address of the Store contract is recorded as a protocol member, which allows

it to update the storage arbitrarily. The same address is set as the contract's owner role,

which allows it to pause and unpause storage updates. We believe these are intended to be

the same role, but they are not programmatically connected. In particular, if the owner address

is renounced or transferred, the deployer will still be able to update storage.

Moreover, it is unclear why the Store owner or deployer requires the ability to modify storage

arbitrarily.

Neptune Mutual Audit − Medium Severity − 16

https://github.com/neptune-mutual-blue/protocol/pull/157
https://github.com/neptune-mutual-blue/protocol/pull/157
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Unstakable.sol#L42-L46
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol#L130-L131
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol#L142
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Finalization.sol#L92
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L400
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Recoverable.sol#L49
https://github.com/neptune-mutual-blue/protocol/pull/132
https://github.com/neptune-mutual-blue/protocol/pull/132
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol#L30
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.4/contracts/access/Ownable.sol#L29
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol#L65-L83
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.4/contracts/access/Ownable.sol#L47-L65

Consider documenting the role in the Security overview if the role is required. Otherwise,

consider renouncing protocol member privileges from the deployer address after the

deployment is finished.

Update: Fixed as of commit 0b278019c01dbce22923d0bb6968ddb48bcc3e2d in pull

request #123. The deployer address is removed as a protocol member, assuming the deployer

is the address that calls the initialize function.

Neptune Mutual Audit − Medium Severity − 17

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/security.md
https://github.com/neptune-mutual-blue/protocol/pull/123
https://github.com/neptune-mutual-blue/protocol/pull/123

Low Severity

L-01 Able to close non-empty staking pool

A staking pool can be closed without checking if there is any remaining liquidity of either the

staking token or the reward token. Once the pool is closed, neither deposit nor withdraw

functions are allowed. Hence, users won't be able to access their funds. However a recovery

agent is still able to retrieve both staking and reward tokens and distribute them as desired.

Consider checking for remaining liquidity before closing a pool.

Update: Fixed as of commit 86b0caa0995ffcdbb1deecf8547c9a3db8c23821 in pull

request #160.

L-02 Collision between constants

The NS_POOL_MAX_STAKE and NS_POOL_REWARD_TOKEN constants are defined to be the

same string, which introduces the possibility of unexpected storage collisions. In the current

code base they are used with non-overlapping data types, which are saved in different

mappings. Nevertheless, in the interest of predictability, consider redefining the

NS_POOL_MAX_STAKE constant to a unique string.

Update: Fixed as of commit 90f03dce0d24af3affc50d19ac81bbc12b524a4f in pull

request #161.

L-03 Implicit timing assumptions

To account for the coverage delay, some valid cxTokens may be excluded from making claims.

Any coverage that will become active within 14 days but before the incident resolution will be

disregarded. This implicitly assumes that no valid cover starts after either of these deadlines

(otherwise it should also be excluded). Since the coverage delay and resolution window are

configurable parameters, the assumptions may not hold. Consider calculating exclusions

based on the specific parameters that are relevant to the incident being processed.

Neptune Mutual Audit − Low Severity − 18

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPoolBase.sol#L51-L59
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPools.sol#L20-L23
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPools.sol#L20-L23
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPools.sol#L39-L41
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPools.sol#L39-L41
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Recoverable.sol#L49
https://github.com/neptune-mutual-blue/protocol/pull/160
https://github.com/neptune-mutual-blue/protocol/pull/160
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolCoreLibV1.sol#L27
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolCoreLibV1.sol#L27
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolCoreLibV1.sol#L22
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolCoreLibV1.sol#L22
https://github.com/neptune-mutual-blue/protocol/pull/161
https://github.com/neptune-mutual-blue/protocol/pull/161
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/cxToken/cxToken.sol#L103
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/cxToken/cxToken.sol#L108
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/cxToken/cxToken.sol#L111

Update: Fixed as of commit e00b4248768c196a2b5047dcc21d91a2503452ab in pull

request #162 and commit 4b929c274100a981107e35d40fbf5b57fabc9be4 in pull

request #196.

L-04 Imprecise bounds

There are several examples where the time windows or value ranges are defined inconsistently.

In particular:

The getWithdrawalInfoInternal function of the RoutineInvokerLibV1 library

considers the end timestamp to be part of the withdrawal period but the

mustBeDuringWithdrawalPeriod validation function does not.

The StakingPoolLibV1 library prevents withdrawals on the block height where

withdrawals can start.

Neither the mustBeBeforeResolutionDeadline function nor the

mustBeAfterResolutionDeadline function will succeed on the resolution deadline.

The flash loan fee calculation requires the loan to be strictly less than the available

balance, even though the contract claims to loan out the whole balance.

Update: Fixed as of commit 3412b68b9d729d0bc5c3b5860ace7a38a06b9835 in pull

request #167.

L-05 Incorrect NPM threshold

Some operations require an NPM stake that must not exceed a threshold, currently set to 10

billion. However, the total NPM supply cannot exceed 1 billion, making the threshold non-

functional. The Neptune team indicated the threshold should only be 10 million. Consider

updating the constant accordingly.

Update: Fixed as of commit 78fafa7314793a3b6b5fe40e1c9129c8f8c4f813 in pull

request #164.

L-06 Lack of input validation

The mustNotExceedNpmThreshold function should validate npmStakeToAdd

instead of amount .

•

•

•

•

•

Neptune Mutual Audit − Low Severity − 19

https://github.com/neptune-mutual-blue/protocol/pull/162
https://github.com/neptune-mutual-blue/protocol/pull/162
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/RoutineInvokerLibV1.sol#L70
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/RoutineInvokerLibV1.sol#L161
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolLibV1.sol#L293
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L261
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L261
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L282
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L282
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/VaultLibV1.sol#L306
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/VaultLibV1.sol#L347
https://github.com/neptune-mutual-blue/protocol/pull/167
https://github.com/neptune-mutual-blue/protocol/pull/167
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ProtoUtilV1.sol#L20
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/token/NPM.sol#L10
https://github.com/neptune-mutual-blue/protocol/pull/164
https://github.com/neptune-mutual-blue/protocol/pull/164
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/delegates/VaultDelegateBase.sol#L246
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/delegates/VaultDelegateBase.sol#L246
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/delegates/VaultDelegateBase.sol#L237
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/delegates/VaultDelegateBase.sol#L237

The setPolicyRatesByKey function in the PolicyAdmin contract does not check

that ceiling is greater than floor , while a similar function setPolicyRates does.

The initialize function in the Protocol contract does not check the length of the

input values array.

When computing unstaking rewards after an incident resolution, the sum of the toBurn

and toReporter rates are not validated to be bounded above by

ProtoUtilV1.MULTIPLIER .

Consider including the corresponding validations.

Update: Fixed as of commit 5ce4b8d3ff0b0a7eb4f0265b4201c93c43af4f30 in pull

request #172 and commit 4b929c274100a981107e35d40fbf5b57fabc9be4 in pull

request #196.

L-07 Missing event parameter

The PoolUpdated event does not include the stakingTarget parameter. Consider

including it.

Update: Fixed as of commit 89d30f63d6c43dd3787cd291e31c03a2b712a0a2 in pull

request #163.

L-08 No unstaking window

After an incident is resolved, successful stakers can retrieve their rewards provided the incident

has not been finalized. When the incident occurred, they will have at least the claim period.

However, if the incident was successfully disputed, there is no claim period and the incident

can be finalized immediately before stakers have been provided sufficient time to claim their

rewards. Consider including an unstaking window for this scenario.

Update: Acknowledged, not fixed. The Neptune team stated:

For incidents resolved as false reporting , we intend to restore the cover status to

operational as soon as possible. This flexibility allows us to accomplish a speedier

finalization while still allowing the tokenholder community sufficient time to unstake their

claim (with reward) on a case-by-case basis.

•

•

•

Neptune Mutual Audit − Low Severity − 20

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/PolicyAdmin.sol#L68
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/PolicyAdmin.sol#L68
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/PolicyAdmin.sol#L43
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/PolicyAdmin.sol#L43
https://github.com/neptune-mutual-blue/protocol/blob/rc2/audit-start/contracts/core/Protocol.sol#L51-L113
https://github.com/neptune-mutual-blue/protocol/blob/rc2/audit-start/contracts/core/Protocol.sol#L51-L113
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L430
https://github.com/neptune-mutual-blue/protocol/pull/172
https://github.com/neptune-mutual-blue/protocol/pull/172
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPoolBase.sol#L48
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPoolBase.sol#L48
https://github.com/neptune-mutual-blue/protocol/pull/163
https://github.com/neptune-mutual-blue/protocol/pull/163
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L425
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L425
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Finalization.sol#L60

L-09 Protocol administrator needs to handle

external tokens

The protocol administrator is one of the most critical roles with immense privilege in the

operation of the entire protocol. For example, only the administrator can re-initialize the

protocol, grant key access control roles, as well as set up all staking and bonding pools.

However, when setting up a staking pool, a non-zero amount of reward tokens are required to

be pre-transferred to the administrator account and pulled to the contract. This implies that the

administrator needs to receive and approve the transaction a priori. This increases the attack

surface and may not fit the intended security assumptions for a critical role.

Consider either using a less critical role to perform staking pool initialization or allowing pool

initialization without any token transfer.

Update: Fixed as of commit 71fd05996061b9c438c557c92cd888f4f4c9c542 in pull

request #173. The Liquidity Manager must now initialise and manage the staking pools. They

must also set up the Bond pools.

L-10 The info parameter might lose information

about an IPFS hash

The info parameter of the report , dispute , and other functions assume that the length

of the IPFS hash is 32 bytes or shorter. However, that is not the case for CIDv1 where the hash

can be longer than 32 bytes and also contain prefixes.

This leads to a data availability issue when NPM holders might be unable to retrieve the

incident information from the smart contracts. Consequently, they are unable to decide

whether to attest or refute the incident.

Consider using a different data structure for storing an IPFS hash.

Update: Fixed as of commit 5ebb130fe274f0237e368ceaac25751936c1b321 in pull

request #165.

Neptune Mutual Audit − Low Severity − 21

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L78
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L283-L287
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPoolBase.sol#L45
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Bond/BondPoolBase.sol#L54
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Staking/StakingPoolBase.sol#L36-L46
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolCoreLibV1.sol#L120
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StakingPoolCoreLibV1.sol#L170
https://github.com/neptune-mutual-blue/protocol/pull/173
https://github.com/neptune-mutual-blue/protocol/pull/173
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L190-L196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L190-L196
https://github.com/multiformats/cid#cidv1
https://github.com/neptune-mutual-blue/protocol/pull/165
https://github.com/neptune-mutual-blue/protocol/pull/165

L-11 Incorrect individual liquidity share

The calculation of an individual's share of liquidity for a particular cover incorrectly uses

values[5] instead of values[4] as the number of PODs. Since this is always zero, the

returned share of liquidity will always be zero.

This has no implications within the current code base but would mislead external users that

rely on it. Consider using the correct number of PODs in the calculation.

Update: Fixed as of commit 2192646ab5efa95a90521b986c81c05ed04fcd37 in pull

request #166.

L-12 Variable outside store

In contrast to most of the code base, the last policy identifier is saved directly in the Policy

contract. However, to maintain continuity and prevent conflicts, any new version will need to

import the old value.

Consider saving it in the Store contract.

Update: Fixed as of commit 1826fa97f1b325d40b0b3446b384dac35074540f in pull

request #168.

Neptune Mutual Audit − Low Severity − 22

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/VaultLibV1.sol#L107
https://github.com/neptune-mutual-blue/protocol/pull/166
https://github.com/neptune-mutual-blue/protocol/pull/166
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/Policy.sol#L32
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/Policy.sol#L35
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/Policy.sol#L35
https://github.com/neptune-mutual-blue/protocol/pull/168
https://github.com/neptune-mutual-blue/protocol/pull/168

Notes & Additional

Information

N-01 transfer and send calls are no longer

considered best practice

When transfer or send calls are used to transfer Ether to an address, they forward only a

limited amount of gas. This precludes destination addresses with complex fallback functions.

Additionally, given that gas prices for EVM operations are sometimes repriced, code execution

on the receiving end of these calls cannot be guaranteed in perpetuity.

There are multiple occurrences throughout the code base where transfer or send is used

to transfer Ether. For instance:

On line 41 of StoreBase.sol Ether is transferred via transfer .

On line 19 of WithRecovery.sol Ether is transferred via transfer .

On line 23 of BaseLibV1.sol Ether is transferred via transfer .

Rather than using transfer or send , consider using address.call{value: amount}

("") or the sendValue function of the OpenZeppelin Address library to transfer Ether.

Update: Fixed as of commit adf8883628f94a27ae61376e98d112f998029e16 in pull

request #187.

N-02 Anyone can temporarily DoS a fresh vault

Vaults are deployed by whitelisted cover creators with the addCover function. To prevent

someone from unbalancing the POD-to-stablecoin ratio immediately after deployment, the

Vault detects unmatched stablecoins and reverts on any attempt to add liquidity which

effectively disables the vault.

A recovery agent could retrieve the excess funds to re-enable the contract. Nevertheless, to

avoid this scenario, consider adding some liquidity in the same transaction as the deployment.

Alternatively, consider tracking the stablecoin balance in a variable to mitigate issues caused

by direct transfers.

•

•

•

Neptune Mutual Audit − Notes & Additional Information − 23

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol#L41
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/token/WithRecovery.sol#L19
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/token/WithRecovery.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/token/WithRecovery.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/BaseLibV1.sol#L23
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/BaseLibV1.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/BaseLibV1.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.7.3/contracts/utils/Address.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.7.3/contracts/utils/Address.sol
https://github.com/neptune-mutual-blue/protocol/pull/187
https://github.com/neptune-mutual-blue/protocol/pull/187
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/Cover.sol#L66-L88
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/Cover.sol#L66-L88
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/VaultLibV1.sol#L44
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Recoverable.sol#L49

N-03 Commit-Reveal voting

The Governance mechanism allows NPM token holders to vote on whether they believe a

reported incident is valid. Typically, the rationale for using voting as an oracle is that token

holders, who are incentivized to vote with the majority, will treat the truth as a natural Schelling

Point. However, since token holders can review the running total, they may instead simply vote

with the majority.

This is commonly mitigated with a commit-reveal voting scheme. However, it is also mitigated

by the possibility of a governance administrator overruling the vote. We are just noting the

practice for your consideration. If the commit-reveal scheme is adopted, votes that are not

revealed should be considered incorrect so that users cannot selectively abstain based on the

running total.

N-04 Copied in dependencies

Dependencies in the lib directory, including openzeppelin-solidity , are copied in without

any reference in .gitmodules . This makes it hard to keep track of the latest versions and

easy to accidentally change the code inside.

Consider using forge install OpenZeppelin/openzeppelin-contracts for the

latest version of the OpenZeppelin contracts.

Update: Fixed as of commit 80f024fb21389e5d29eff9e79a6d0248c6f61183 in pull

request #188.

N-05 Docstrings not following NatSpec

Across the code base there are several examples of contracts not consistently following the

Ethereum Natural Specification Format (NatSpec). Consider following this specification on

everything that is part of the contracts' public API.

Some examples include:

Missing NatSpec for productKey at line 151 of PolicyHelperV1 .

Discrepancy between addCover 's NatSpec in the Cover contract and the ICover

interface the interfaces misses NatSpec for 8th and 9th parameters. Consider using

@inheritdoc NatSpec tag.

Return variables are documented using @param instead of @return in Vault.getInfo.

•

•

•

Neptune Mutual Audit − Notes & Additional Information − 24

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Governance.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L425
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L512
https://karl.tech/learning-solidity-part-2-voting/
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol#L80
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/lib
https://github.com/neptune-mutual-blue/protocol/pull/188
https://github.com/neptune-mutual-blue/protocol/pull/188
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/PolicyHelperV1.sol#L151
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/Cover.sol#L30-L65
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/Cover.sol#L30-L65
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/interfaces/ICover.sol#L29-L58
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/interfaces/ICover.sol#L29-L58
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/interfaces/ICover.sol#L29-L58
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/liquidity/Vault.sol#L77-L93

N-06 Duplicate modifier

The unpause function of the ProtoBase contract has two whenPaused modifiers.

Consider removing the first one.

Update: Fixed as of commit 290c68fd25a1f2967324948398227684ec834597 in pull

request #183.

N-07 Duplicate token supply tracking

The NPM token tracks the number of tokens that have been issued. This should be identical to

the total supply if the tokens are never burned. It's worth noting that the code base transfers

funds to a burner address instead of reducing the supply.

Consider disabling the burn functionality so that the total issued amount does not need to be

tracked and updated separately.

Update: Not an issue. The Neptune team stated:

Given that the NPM token and protocol will be deployed on different blockchains, this is

the proper approach. Ethereum is the only chain where token burn occurs. The

burned tokens are transferred to a specified address on each chain and then bridged

back to Ethereum on a regular basis.

N-08 Excessive indirection and coupling

We found this audit to be significantly complicated by data storage reference patterns that

hinder the ability to reason locally about each function's behavior in isolation. Although we

typically focus on explicit vulnerabilities or specific recommendations, we believe it may be

helpful to highlight some general patterns and possible alternatives for your consideration.

Naturally, any significant refactor should be thoroughly evaluated and tested.

Key construction

The StoreKeyUtil contract has a different function for several supported combinations of

data type, operation, number of keys and type of keys. This adds a large amount of boilerplate

code. Moreover, not all valid combinations are included, leading to situations where storage

keys are sometimes calculated directly and sometimes implicitly specified.

Neptune Mutual Audit − Notes & Additional Information − 25

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/ProtoBase.sol#L90
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/ProtoBase.sol#L90
https://github.com/neptune-mutual-blue/protocol/pull/183
https://github.com/neptune-mutual-blue/protocol/pull/183
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/token/NPM.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.4/contracts/token/ERC20/ERC20.sol#L40
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Unstakable.sol#L108
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Unstakable.sol#L108
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StoreKeyUtil.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StoreKeyUtil.sol
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L653
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L662

We believe the extra layer of indirection is both complicated and unnecessary, and would be

cleaner if storage lookups accepted a generic bytes value (that could be hashed to a

bytes32). This could also remove the need for use-case specific multi-dimensional mapping

types.

Meaningful names

Some keys are reused for different variables and are distinguished only by the type. For

example, NS_COVER_PRODUCT represents whether the product is supported, the product

reference, an entry in the cover's product array and the active status of the product. It would

be clearer to use different constants for different variables or include a human-readable

identifier to distinguish them.

Conversely, contextual values can be reused to highlight commonalities between variables. For

example, there are global, cover-specific, product-specific, incident-specific and account-

specific variables. These could each be represented by a context variable that both

identifies the specificity of the key and can be reused between variables with the same context.

Constant-specific functions

There are several examples of duplicated functions that differ only by the relevant constant. It

would be simpler and cleaner to pass the constant to a generic function. For example, the

access control functions could be replaced by a single function that accepts a role constant.

Similarly, generic getter functions can be combined so meaningful helper functions can be

distinguished.

N-09 Incomplete deletion

When finalizing an incident, an unused record is deleted. Additionally, the first disputer is not

deleted. Consider updating the deletions accordingly.

Update: Fixed as of commit 113a6b7ff7fff5730cefedd4d35c7c6cd9f65bbf in pull

request #186.

N-10 Incorrect array size

The getCoverPoolSummaryInternal function creates an array of size 8 but only uses 7

positions. Similarly, the getInfoInternal function creates an array of size 11 but only uses

8 positions.

Neptune Mutual Audit − Notes & Additional Information − 26

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol#L17
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol#L17
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverLibV1.sol#L210
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverLibV1.sol#L211
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverLibV1.sol#L211
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverLibV1.sol#L212
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverLibV1.sol#L215
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L44
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L32
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L120
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L147
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L254
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L254
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L324-L325
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/AccessControlLibV1.sol#L26-L84
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/AccessControlLibV1.sol#L14-L21
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L23-L87
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L98-L103
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Finalization.sol#L91
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L612
https://github.com/neptune-mutual-blue/protocol/pull/186
https://github.com/neptune-mutual-blue/protocol/pull/186
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L145
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/VaultLibV1.sol#L100

Consider resizing them accordingly.

Update: Fixed as of commit 1826fa97f1b325d40b0b3446b384dac35074540f in pull

request #168 and commit c6b1bb74a299f7c4d6d03484da91e5780fab3faa in pull

request #190. The arrays have been replaced with structs.

N-11 Misleading comments

Some comments are misleading, and the implementation does not follow the stated intention.

For example,

In line 76, it was stated not to reset the first reporter by incident date. However, the first

reporter is not saved by incident date, and it is deleted in line 90 of

Finalization.sol . Similarly, the commented out lines do not contain the

productKey and don't correspond to any saved value.

In line 128 of Protocol.sol , it is said that the protocol needs to be paused when the

addMember function is invoked but in line 136, it ensures the protocol must not be

paused.

The comments describing the callerMustBeX functions reference the "sender" rather

than the caller parameter.

When initializing the protocol, the burner address must be non-zero but the comment

says it isn't necessarily zero.

Consider updating the comments to be aligned with the code implementation.

Update: Fixed as of commit 7d1315614a799ff200f77001aaaaaf91e8ad499a in pull

request #189 and 9a3cf2ad7fba096dd5c3cada68b83bf693080baf in pull request #196.

N-12 Naming issues hinder code understanding

and readability

To favor explicitness and readability, several parts of the contracts may benefit from better

naming. Our suggestions are:

Rename disablePolicy to updateDisablePolicyStatus .

Use "timestamp" instead of "date" where relevant throughout the code base.

Rename "resolution timestamp" to "reporting deadline", to distinguish it from the

"resolution deadline".

Rename incidentHappened to isClaimable .

•

•

•

•

•

•

•

•

Neptune Mutual Audit − Notes & Additional Information − 27

https://github.com/neptune-mutual-blue/protocol/pull/168
https://github.com/neptune-mutual-blue/protocol/pull/168
https://github.com/neptune-mutual-blue/protocol/pull/190
https://github.com/neptune-mutual-blue/protocol/pull/190
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Finalization.sol#L76
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L555
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Finalization.sol#L90
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Finalization.sol#L96-97
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L128
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L136
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/AccessControlLibV1.sol#L86-L147
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/AccessControlLibV1.sol#L86-L147
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L54
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L27
https://github.com/neptune-mutual-blue/protocol/pull/189
https://github.com/neptune-mutual-blue/protocol/pull/189
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/Cover.sol#L182
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/lifecycle/Cover.sol#L182
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L352
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol#L197
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L431
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ValidationLibV1.sol#L431

Rename delgate to delegate .

N-13 Product status needs not be incident

specific

The status of a cover or product is often queried against its coverKey / productKey

combination. For example, the status needs to be normal before any liquidity event such as

adding liquidity, lending out flashloan, reporting an incident , or purchasing a cover proceeds.

However, the product status hashkey depends on an incidentDate . When looking up the

product status, one first routes to the active incidentDate , and then computes the right key

to read the internal status. In particular, in the case of a normal status, the active

incidentDate is always 0 and further checks are no longer necessary. This implicit

mechanism is also relied upon for newly deployed products to have a normal status.

Consider refactoring variables such as ProductStatus that do not need to depend on the

incidentDate for its hashkey for clarity and simplicity.

N-14 Repeated pause validation

Several functions in the Protocol contract have a whenNotPaused modifier and

mustNotBePaused requirement. However, both of these check the pause status of the

Protocol contract, so one of them is redundant. Consider removing one of them.

Update: Fixed as of commit 7a84b7a6a750224c9f29b2bdbbea84a65c9fdde3 in pull

request #170.

N-15 Risks associated with the price oracle

An on-chain Time Weighted Average Price (TWAP) oracle is used to derive the NPM and LP

token market prices from a UniswapV2 NPM-stablecoin pool. These prices are then used to

calculate the amount of NPM tokens returned when users deposit their LP tokens to the

bonding pool.

In general, a TWAP price is known to be rather resistant to single block manipulation. However,

it is still subject to the risk of multi-block MEV, of which the switch to Proof of Stake may

change its feasibility profile drastically.

•

Neptune Mutual Audit − Notes & Additional Information − 28

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/liquidity/VaultBase.sol#L46
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/liquidity/VaultBase.sol#L46
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/delegates/VaultDelegateBase.sol#L243
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/delegates/VaultDelegateWithFlashLoan.sol#L92
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L133
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/policy/Policy.sol#L112
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L352-L359
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L317-L318
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L317-L318
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L285
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L135
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L135
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L136
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L136
https://github.com/neptune-mutual-blue/protocol/pull/170
https://github.com/neptune-mutual-blue/protocol/pull/170
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/BondPoolLibV1.sol#L40-L42
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/pool/Bond/BondPool.sol#L17-L25

As the NPM tokens are locked after bond purchase, there is time for the recovery agent to

sweep the fund in case of an oracle price manipulation. We recommend close monitoring of

the liquidity depth of the NPM-stablecoin pool to mitigate any oracle risk.

N-16 Typos

Throughout the code base, there are some incidences of typographical errors in the comments.

For example,

highy should be highly

responsbility should be responsibility

Retuns should be Returns

indicent should be incident

extra as

Update: Fixed as of commit 4b929c274100a981107e35d40fbf5b57fabc9be4 in pull

request #196.

N-17 Unexplained dead code

The CoverUtilV1 contract contains a function that has been commented out without

explanation. Consider removing it from the code base or explaining why it is there.

N-18 Unnecessary complex code

The s.getStablecoin() == address(token) == false expression on line 245

of StrategyLibV1.sol can be replaced with s.getStablecoin() !=

address(token) .

Line 272 of CoverLibV1.sol casts the variable of type address to type address .

The casting can be avoided.

isProtocolMember is defined both in line 257 of ProtoUtilV1.sol and line 85 of

StoreBase.sol .

N-19 Unnecessary coupling

When recording an attestation, the stake is recorded against the who address, but the reporter

is set to the message sender. In both invocations, the who parameter is set to the message

•

•

•

•

•

•

•

•

Neptune Mutual Audit − Notes & Additional Information − 29

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L182
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L182
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L232
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/Protocol.sol#L232
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L344
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L344
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L365
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L365
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol#L25
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol#L25
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L615-L618
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/StrategyLibV1.sol#L245
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverLibV1.sol#L272
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ProtoUtilV1.sol#L257
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/store/StoreBase.sol#L85
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L548
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L548
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L555
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Reporter.sol#L146
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/Witness.sol#L110

sender anyway. Nevertheless, in the interest of local reasoning, consider using the who

address consistently. A similar observation applies to the first disputer.

Similarly, when calculating the future commitment, the number of months to check should

depend on the global limit.

Update: Fixed as of commit 63fce22c67f72cf090ffa124784a3d92935e2d66 in pull

request #136 and commit f47e959a2f89e29390164257e7dce298442cff11 in pull

request #184.

N-20 Unused imports

Throughout the code base many imports are unused and could be removed. Some examples

are:

Line 5 of ProtoBase.sol

Line 4 of cxTokenFactory.sol

Line 7 of Resolvable.sol

Line 5 of Unstakable.sol

Consider removing unused imports to avoid confusion that could reduce the overall clarity and

readability of the code base.

Update: Fixed as of commit 4b929c274100a981107e35d40fbf5b57fabc9be4 in pull

request #196.

•

•

•

•

Neptune Mutual Audit − Notes & Additional Information − 30

https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/GovernanceUtilV1.sol#L612
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/CoverUtilV1.sol#L543
https://github.com/neptune-mutual-blue/protocol/blob/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/libraries/ProtoUtilV1.sol#L14
https://github.com/neptune-mutual-blue/protocol/pull/136
https://github.com/neptune-mutual-blue/protocol/pull/136
https://github.com/neptune-mutual-blue/protocol/pull/184
https://github.com/neptune-mutual-blue/protocol/pull/184
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/ProtoBase.sol#L5
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/ProtoBase.sol
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/ProtoBase.sol
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/cxToken/cxTokenFactory.sol#L4
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/cxToken/cxTokenFactory.sol
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/cxToken/cxTokenFactory.sol
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol#L7
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Resolvable.sol
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Unstakable.sol#L5
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Unstakable.sol
https://github.com/neptune-mutual-blue/protocol/tree/73fc82fbe0d1388867b7df669983fe42760daeb1/contracts/core/governance/resolution/Unstakable.sol
https://github.com/neptune-mutual-blue/protocol/pull/196
https://github.com/neptune-mutual-blue/protocol/pull/196

