
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Neptune Mutual
Date: 23 October, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Neptune
Mutual

Approved By Ivan Bondar | Solidity SC Auditor at Hacken OÜ

Tags Liquidity Pool

Platform EVM

Language Solidity

Methodology Link

Website https://neptunemutual.com/

Changelog
08.09.2023 – Initial Review
09.10.2023 - Second Review
23.10.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://neptunemutual.com/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10

H01. Coarse-grained Access Control; Data Inconsistency 10
H02. Unverifiable Logic 10
H03. Denial Of Service; Highly Permissive Owner Access 11
H04. Undocumented Functionality 12
H05. Missing Storage Gaps 13
H06. Highly Permissive Owner Access 13
H07. Mishandled Edge Case 14
H08. Highly Permissive Owner Access 15
H09. Unrestricted Token Recovery 15

Medium 16
M01. Race Condition 16
M02. Highly Permissive Owner Access 16
M03. Lack of Emergency Withdrawal Mechanism 17

Low 17
L01. CEI Pattern Violation 17
L02. Redundant Complexity 18

Informational 18
I01. Floating Pragma 18
I02. Solidity Style Guides Violation 19
I03. Unnecessary Functionality 20
I04. Accumulation of Dust Values 20

Disclaimers 21
Appendix 1. Severity Definitions 22

Risk Levels 22
Impact Levels 23
Likelihood Levels 23
Informational 23

Appendix 2. Scope 24

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Neptune Mutual (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

Neptune Mutual is a liquidity pool protocol with the following contracts:
● LiquidityGaugePool — a protocol that manages the depositions to the

liquidity pool and distribution of NPM token rewards to users who
contribute liquidity to the protocol and engage in staking.

● LiquidityGaugePoolController — an abstract contract that is inherited
by LiquidityGaugePool to manage pool info registries.

● LiquidityGaugePoolReward — an abstract contract that is used by
LiquidityGaugePool to calculate rewards and update voting powers.

● LiquidityGaugePoolState — an abstract contract to be used as storage
of variables.

Privileged roles
● The admin of the LiquidityGaugePool can:

○ pause/unpause the contract
○ set all the pool info

● The _NS_ROLES_PAUSER role of LiquidityGaugePool contract can:
○ pause the contract

● The _NS_ROLES_RECOVERY_AGENT role of the LiquidityGaugePool contract
can:

○ recover/withdraw assets (except staking and reward tokens) from
the contract

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● NatSpec format was missing.

Code quality
● The total Code Quality score is 9 out of 10.
● Style guide is violated.
● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Although the coverage tool result is sufficient, interactions by

several users are not tested thoroughly. For instance, withdrawing
rewards from different users and comparing the results is missing.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

8 September 2023 2 3 9 0

9 October 2023 0 0 2 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


23 October 2023 0 0 0 0

Risks

● The LiquidityGaugePool relies on external contracts for reward
calculation, which were not part of this audit. Any vulnerabilities,
changes, or unexpected behaviors in these external contracts can
directly impact the reward distribution in the LiquidityGaugePool.
Users and the platform might face inaccurate or unintended reward
distributions due to external dependencies.

● Every user has to wait at least a minimum 100-block waiting period
after each deposit before they can withdraw funds. Even if users have
previously deposited assets, the waiting period is calculated based
on the most recent deposit for all, regardless of any prior deposits.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed I01

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Failed I02

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

H01. Coarse-grained Access Control; Data Inconsistency

Impact High

Likelihood Medium

The setPool function in the LiquidityGaugePool contract grants
entities with the DEFAULT_ADMIN_ROLE extensive power to modify vital
parameters of the _poolInfo struct, including but not limited to
stakingToken, veToken, and rewardToken.

Unrestricted modifications can potentially lead to unauthorized
alterations at any moment, posing severe risks like asset freezing,
economic imbalances, and unintended reward manipulations.

Furthermore, during the initialization of the LiquidityGaugePool.sol
contract, the _setPool function gets invoked for the first time
without adequately checking its input values for invalid or default
data. Given the importance of these variables to the contract's
functionality, uninitialized or default values might introduce
unpredictability and erratic behavior.

Allowing such broad changes without granular controls or proper
initial checks can expose the contract to unauthorized alterations,
potentially eroding user trust and assets.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: setPool()

Recommendation: Divide the setPool function into smaller, specialized
functions to manage specific parameter updates individually.
Implement granular access controls for each function based on its
importance and potential impact. Introduce thorough checks during the
contract's initialization phase, ensuring all vital variables are set
to valid, non-default values. Reject or revert transactions that
attempt to initialize with inappropriate or default values.

Found in: 5e44aba

Status: Fixed (Revised commit: 5ff90a0)

H02. Unverifiable Logic

Impact High

Likelihood Medium

www.hacken.io
10



LiquidityGaugePoolReward contract’s _updateVotingPowers function
manages the voting power of each user and it relies on the
VoteEscrowToken, VoteEscrowBooster and TokenRecovery contracts.
However, they are out-of-scope and their implementation and safety
cannot be verified.

GaugeControllerRegistry contract is the registry address in the
system and is responsible for setting the epochs, but it is out of
scope. Therefore, its implementation and safety cannot be verified.

Without a thorough evaluation of these external dependencies, it may
be challenging to identify and mitigate potential vulnerabilities,
which could in turn pose risks to the overall system's stability and
security.

Path: ./src/gauge-pool/LiquidityGaugePoolReward.sol

./src/gauge-pool/LiquidityGaugePool.sol

Recommendation: Add the mentioned contracts to the scope.

Found in: 5e44aba

Status: Mitigated (The Customer accepted all the risks and did not
add the mentioned contracts to the scope.) (Revised commit: 5ff90a0)

H03. Denial Of Service; Highly Permissive Owner Access

Impact High

Likelihood Medium

The current implementation of the platform fee lacks constraints,
permitting it to be set to any value, including values exceeding
100%. This oversight poses a critical risk as fees exceeding 100%
would lead to a scenario where the system locks users' tokens.

This will result in reversion with PlatformFeeTooHighError error and
cause Denial of Service.

Such lockups occur because the withdraw function will inevitably fail
due to insufficient balances, causing the contract to be unable to
return more than what users initially deposited.

Additionally, current design of the system allows for altering fee
amounts for unclaimed rewards. Unpredictable fee changes can
undermine user trust, potentially leading to reduced platform
activity or complete withdrawals.

Paths:
./src/gauge-pool/LiquidityGaugePool.sol: setPool()
./src/gauge-pool/LiquidityGaugePool.sol : _withdrawRewards()

Recommendation: Ensure that any earned but unclaimed rewards are
shielded from platform fee modifications. Changes in the fee
structure should only be applicable to new rewards earned after the

www.hacken.io
11



change. Define and set a maximum reasonable limit for the platformFee
based on the platform's operational needs and profitability models.
For instance, consider capping the fee at a maximum of 20% or another
value deemed appropriate, ensuring a fair distribution to users and
preventing excessive charges.

Found in: 5e44aba

Status: Fixed (The maximum fee rate is capped to 20%.)(Revised
commit: 5ff90a0)

H04. Undocumented Functionality

Impact High

Likelihood Medium

The DEFAULT_ADMIN_ROLE can alter vital parameters such as
platformFee, veBoostRatio, veToken, registry address, key, name, and
info. The implications and necessity of these changes are not
documented, leading to potential unintended consequences.

Adjustments to these settings can disrupt the normal operations of
the platform. Changes, especially to parameters like veBoostRatio and
veToken, can affect the rewards of the users.

The platform fee mechanism, a crucial part of user interactions with
the platform, remains unmentioned in the provided documentation.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: setPool()

Recommendation: Remove any settings that are unnecessary for the
system. For every remaining admin-controllable parameter, create
comprehensive documentation outlining its purpose, the implications
of changing it, and the scenarios under which it might need
adjustment. Incorporate detailed documentation about the platform fee
mechanism, elucidating its purpose, calculation, and implications. A
clear understanding of the fee system is essential for users and
should be made easily accessible.

Found in: 5e44aba

Status: Mitigated (The client provided reasons for updating certain
essential variables, which can be summarized as follows:

● setPool is updated to prevent access during an active epoch.
● platformFee represents fees collected from user rewards, which

are subsequently transferred to the treasury.
● veToken refers to an ERC20 token with a lockup mechanism that

can increase a user's voting power by up to 4x.
● veBoostRatio is a numerical factor used to adjust the weight of

a user's voting power during reward calculations.
● Registry denotes the address authorized to call the setEpoch

method on the Liquidity Gauge Pool, enabling the initiation of
an epoch on the pool.

www.hacken.io
12



Although the platform fee can still be changed, the issue is
mitigated because the fee is capped to 20%. ) (Revised commit:
5ff90a0)

H05. Missing Storage Gaps

Impact Medium

Likelihood High

When working with upgradeable contracts, it is necessary to introduce
storage gaps to allow for storage extension during upgrades.

Storage gaps are a convention for reserving storage slots in a base
contract, allowing future versions of that contract to use up those
slots without affecting the storage layout of child contracts.

Paths:
./src/gauge-pool/LiquidityGaugePoolController.sol
./src/gauge-pool/LiquidityGaugePoolState.sol
./src/gauge-pool/LiquidityGaugePoolReward.sol
./src/util/TokenRecovery.sol
./src/util/WithPausability.sol

Recommendation: Introduce Storage Gaps in the affected contract.

To create a storage gap, declare a fixed-size array in the base
contract with an initial number of slots. This can be an array of
uint256 so that each element reserves a 32 byte slot. Use the name
__gap or a name starting with __gap_ for the array so that
OpenZeppelin Upgrades will recognize the gap.

To help determine the proper storage gap size in the new version of
your contract, you can simply attempt an upgrade using upgradeProxy
or just run the validations with validateUpgrade (see docs for
Hardhat). If a storage gap is not being reduced properly, you will
see an error message indicating the expected size of the storage gap.

Found in: 5e44aba

Status: Fixed (Storage gaps are added to the LiquidityGaugePoolState
contract.)) (Revised commit: e90464d)

H06. Highly Permissive Owner Access

Impact High

Likelihood Medium

Entities with DEFAULT_ADMIN_ROLE permissions can modify crucial
variables, such as stakingToken and rewardToken, even after users
have made deposits into the pool.

www.hacken.io
13

https://docs.openzeppelin.com/upgrades-plugins/1.x/api-hardhat-upgrades


If the stakingToken is changed after deposits, users might become
unable to withdraw their original staked assets.

Changing the rewardToken might result in users receiving rewards in a
token they did not anticipate or desire, potentially altering the
economic value of their rewards.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: setPool()

Recommendation: Allow modification of stakingToken and rewardToken
only during the initialization phase of the pool. Once the pool
becomes active and starts accepting deposits, lock these parameters
to prevent changes or implement a mechanism to check if the pool has
active deposits. If there are active deposits, prevent changes to
stakingToken and rewardToken. Implement a validation check to ensure
that the stakingToken is not equivalent to the rewardToken.

Found in: 5e44aba

Status: Fixed (The modification of the parameters are protected and
proper checks that controls if the rewards are not distributed from
the staked tokens are implemented. ) (Revised commit: e90464d)

H07. Mishandled Edge Case

Impact High

Likelihood Medium

The deposit function in the contract updates the _lastDepositHeights
for a user every time they deposit tokens. This mechanism
unintentionally extends the withdrawal lockup period for users who
make consecutive deposits.

Users who want to top up their deposits or make regular contributions
can inadvertently extend their lockup period. This could lead to a
scenario where users might not be able to access their funds when
needed, especially if they are unaware of this behavior.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: deposit(), withdraw(),
exit()

Recommendation: Transit from a single deposit height system to an
array-based approach where each deposit gets its unique timestamp.
This way, every deposit is treated as a separate entity with its
lockup period. Implement a withdrawal function that allows users to
specify the index of the deposit they want to withdraw from, ensuring
that only deposits that have matured past their lockup period can be
withdrawn.

Found in: 5e44aba

Status: Mitigated (The Client has stated their intention to mandate a
waiting period of 100 blocks for users immediately following each
user deposit.) (Revised commit: 5ff90a0)

www.hacken.io
14



H08. Highly Permissive Owner Access

Impact High

Likelihood Medium

Entities possessing DEFAULT_ADMIN_ROLE permissions can change the
lockupPeriodInBlocks, potentially trapping user funds by extending
the withdrawal lockup period unexpectedly.

An extension of lockupPeriodInBlocks could lead to users' funds being
inaccessible for longer than anticipated, disrupting their financial
plans. Users may lose trust in the platform due to unpredictable
changes in withdrawal timelines.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: setPool()

Recommendation: Implement a mechanism that ensures that any change to
lockupPeriodInBlocks only affects new deposits. Implement a maximum
cap on the lockupPeriodInBlocks to ensure there are boundaries to how
long funds can be locked.

Found in: 5e44aba

Status: Fixed (The lockupPeriodInBlocks parameter is now a constant
with the value of 100.)(Revised commit: 5ff90a0)

H09. Unrestricted Token Recovery

Impact High

Likelihood Medium

The recoverToken function grants entities with the
_NS_ROLES_RECOVERY_AGENT role the power to withdraw any token from
the contract. This includes critical tokens such as staking and
reward tokens.

Entities with the _NS_ROLES_RECOVERY_AGENT role could potentially
misuse this function to siphon off staking or reward tokens. This may
result in financial losses for users and erode trust in the platform.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: recoverToken()

Recommendation: Update the recoverToken function to exclude vital
tokens such as staking and reward tokens. Only allow the function to
recover tokens that should not be in the contract (e.g., mistakenly
sent tokens).

Found in: 5e44aba

Status: Fixed (Revised commit: 5ff90a0)

www.hacken.io
15



Medium

M01. Race Condition

Impact Medium

Likelihood Low

The _withdrawRewards function calculates the platformFee based on the
current state of the _poolInfo.platformFee variable. Given the
dynamic nature of blockchain states, it is possible that the
platformFee variable could be changed by an admin between when a user
initiates a transaction and when it gets mined, leading to unexpected
fee deductions.

A user intending to withdraw their rewards may be subjected to a
different platform fee than anticipated. This can result in
unexpected deductions, which could erode user trust in the system and
lead to potential financial loss for the user.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: withdrawRewards(),
exit()

Recommendation: Add an additional parameter to the withdrawRewards
and exit functions, specifying the expected platformFee. This way,
the transaction would only succeed if the fee matches the user's
expectation at the time of execution. Alternatively, introduce a
mechanism that delays platform fee changes, ensuring users are
informed in advance and have a grace period to withdraw their rewards
before the new fees come into effect.

Found in: 5e44aba

Status: Mitigated (A mechanism has been introduced that restricts any
modifications to the pool fee during the duration of an active epoch.
This safeguard ensures that users won't face sudden or unexpected fee
changes for any transaction within that epoch. However, it's
essential for users to note that if rewards are not withdrawn within
the same epoch in which they deposited, they might encounter a
different fee structure in subsequent epochs. Despite this, the
mechanism aids in reinforcing trust by guaranteeing the stability of
the fee structure during each epoch.) (Revised commit: 5ff90a0)

M02. Highly Permissive Owner Access

Impact Medium

Likelihood Medium

The LiquidityGaugePool contract's pause functionality impacts not
only deposits but also withdrawals, including both token withdrawals
and reward withdrawals.

Pausing withdrawals, especially in emergencies or uncertain
situations, can raise panic and mistrust among users. It denies users

www.hacken.io
16



access to their staked assets and earned rewards, potentially causing
financial and reputational damage to the platform.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: withdrawRewards(),
exit(), withdraw()

Recommendation: While pausing new deposits might be acceptable under
certain conditions, users should always have the capability to
withdraw their assets and rewards. Ensure that the pause mechanism
only impacts deposits, leaving withdrawals unaffected.

Found in: 5e44aba

Status: Fixed (Revised commit: 5ff90a0)

M03. Lack of Emergency Withdrawal Mechanism

Impact High

Likelihood Low

The LiquidityGaugePool contract does not feature a mechanism for
emergency withdrawals, excluding rewards. Users may be left unable to
access their assets if issues arise with reward calculation.

In the event of failures or unforeseen issues with the reward
calculation (part of rewards calculation logic is in out-of-scope
contracts), users would be unable to withdraw their primary deposited
assets. This situation can lead to panic, potential financial losses
for users, and erode trust in the platform.

Path: ./src/gauge-pool/LiquidityGaugePool.sol

Recommendation: Implement an emergencyWithdraw function. This
function should allow users to retrieve their deposited assets
without claiming the rewards. This provides a safety mechanism,
ensuring users can always access their primary assets irrespective of
the platform's state or issues with other dependent contracts. Even
with an emergency withdrawal, ensure thorough checks are in place to
prevent any misuse of this function.

Found in: 5e44aba

Status: Fixed (Revised commit: 5ff90a0)

Low

L01. CEI Pattern Violation

Impact Low

Likelihood Low

In the deposit function, a CEI pattern violation has been detected,
although it doesn't immediately present a reentrancy risk. The amount

www.hacken.io
17



to be deposited is taken after the corresponding
state(variables/mappings) is updated. To resolve this issue, it is
advisable to refactor the affected code to conform to the CEI
pattern, thereby enhancing code readability and alignment with
recognized coding standards.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: deposit()

Recommendation: Before changing any internal state, it should be
ensured that the user has the necessary tokens and has set the proper
allowances.

Found in: 5e44aba

Status: Fixed (Revised commit: 5ff90a0)

L02. Redundant Complexity

Impact Low

Likelihood Low

The setEpoch function in the provided code presents both efficiency
and design concerns. Specifying epoch numbers manually can lead to
irregular epoch numbers and a code that looks complex unnecessarily
and this can make it challenging to track and understand the
progression of epochs.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: setEpoch()

Recommendation: Use an internal mechanism to increment the epoch
number by one instead of manually setting it. This will ensure
regular and sequential epoch numbers, making it easier to track the
contract's state.

Found in: 5e44aba

Status: Mitigated (The epoch number is validated off-chain. The
Customer stated that this implementation needed since the epoch is
managed from the registry and a pool can be inactive for some
epochs.)(Revised commit: 5ff90a0)

Informational

I01. Floating Pragma

The project uses floating pragmas ^0.8.12.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: ./src/gauge-pool/*.sol

www.hacken.io
18



Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: 5e44aba

Status: Reported (Floating pragmas are present.) (Revised commit:
5ff90a0)

I02. Solidity Style Guides Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Path: ./src/gauge-pool/LiquidityGaugePool.sol

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Providing comprehensive NatSpec annotations for functions and

www.hacken.io
19

https://github.com/ethereum/solidity/releases


following Solidity's naming conventions further enrich the quality of
the code.

Found in: 5e44aba

Status: Reported (Revised commit: 5ff90a0)

I03. Unnecessary Functionality

The LiquidityGaugePool.sol contract inherits from WithPausability.sol
which contains a redundant function _setPausers. This excess
functionality is not utilized and might increase Gas costs
unnecessarily. A more gas-efficient option would be to inherit from
PausableUpgradeable.sol.

Every unnecessary function or variable in a smart contract increases
the contract deployment and interaction costs due to extra bytecode.

Path: ./src/gauge-pool/LiquidityGaugePool.sol

Recommendation: Replace the inheritance of WithPausability with
PausableUpgradeable.sol to remove the extraneous functionality and
potentially reduce Gas costs.

Found in: 5e44aba

Status: Fixed (Revised commit: 5ff90a0)

I04. Accumulation of Dust Values

The reward calculation logic in setEpoch could lead to small
discrepancies (dust) in token amounts because of Solidity's integer
division rounding behavior.

Over time, with many epochs and reward calculations, these
discrepancies might accumulate, leading to a non-trivial amount of
tokens being "locked" in the contract and not distributed as rewards.

Path: ./src/gauge-pool/LiquidityGaugePool.sol: setEpoch()

Recommendation: Implement a function or mechanism to "collect" and
redistribute or handle any accumulated dust in the contract.

Found in: 5e44aba

Status: Reported (Revised commit: 5ff90a0)

www.hacken.io
20



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
21



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
22



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
23



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/neptune-mutual-blue/periphery/

Commit 5e44aba0427820d3f4c466d8ce1ac703d8d165be

Requirements Link
Link

Technical
Requirements

Link
Link

Contracts File: src/gauge-pool/LiquidityGaugePool.sol
SHA3: 15bff7f623e65fedc4559a838145e9288fd5d816fe7e152afa4cce87fbb0d364

File: src/gauge-pool/LiquidityGaugePoolController.sol
SHA3: 3a5170d62e7cf20bd7169bf3a97eba411fd0df61e213bd47ab56db8c7746dda8

File: src/gauge-pool/LiquidityGaugePoolReward.sol
SHA3: a3befa1db28996a6ff0fd58577a1683c257eb28eed3134fe2594dd232b268c44

File: src/gauge-pool/LiquidityGaugePoolState.sol
SHA3: 51f75b7d2ff7c7a8806a89ab47b5fc57521ad4c068bcf1852709a7af20d4be67

File: src/gauge-pool/interfaces/ILiquidityGaugePool.sol
SHA3: 0ea79859e0d784348e6458924ca75fe5a5f2bf809b6c7b60b62a2948fb0b8436

Second review scope

Repository https://github.com/neptune-mutual-blue/periphery/

Commit 5ff90a06745f2db81ac3e44da432439810f86fcb

Requirements Link
Link

Technical
Requirements

Link
Link

Contracts File: src/gauge-pool/LiquidityGaugePool.sol
SHA3: 2a8d07673d2ca67bd51336a041417009b18f49075c7e1e3db8fdecc53c021190

File: src/gauge-pool/LiquidityGaugePoolController.sol
SHA3: 46a05dd9e539b56baf8efcc0139b70cfc065a1f013871abc054995e96204cc98

File: src/gauge-pool/LiquidityGaugePoolReward.sol
SHA3: f1a63302a0f201cb3a8d0f734072c56287b9c08be1257be3ecd9ae8e429d3e79

File: src/gauge-pool/LiquidityGaugePoolState.sol
SHA3: 233b5cf2451e41e5523fac0df43311397636e1e47b456140f7c197f496a6f0c9

File: src/gauge-pool/interfaces/ILiquidityGaugePool.sol
SHA3: 275018fb3f0a82c2ef833afed3815d82f310b8919c97dc6e00d7f695e3a970fb

www.hacken.io
24

https://github.com/neptune-mutual-blue/periphery/
https://neptunemutual.com/docs/liquidity-gauge-pools/
https://github.com/neptune-mutual-blue/periphery/tree/2bdf8814567554ffc6232c45ae2fcd3032bf9f1b#readme
https://neptunemutual.com/docs/welcome/
https://github.com/neptune-mutual-blue/periphery/tree/2bdf8814567554ffc6232c45ae2fcd3032bf9f1b#readme
https://github.com/neptune-mutual-blue/periphery/
https://neptunemutual.com/docs/liquidity-gauge-pools/
https://github.com/neptune-mutual-blue/periphery/tree/2bdf8814567554ffc6232c45ae2fcd3032bf9f1b#readme
https://neptunemutual.com/docs/welcome/
https://github.com/neptune-mutual-blue/periphery/tree/2bdf8814567554ffc6232c45ae2fcd3032bf9f1b#readme


Third review scope

Repository https://github.com/neptune-mutual-blue/periphery/

Commit e90464d07b425f5f1a85959e1c196a0a8ae43282

Requirements Link
Link

Technical
Requirements

Link
Link

Contracts File: LiquidityGaugePool.sol
SHA3: 0db3d7a55c6117c5a5eaa2e4453a406a7c4ecbe80112d299d34a103fe3833afb

File: LiquidityGaugePoolController.sol
SHA3: 46a05dd9e539b56baf8efcc0139b70cfc065a1f013871abc054995e96204cc98

File: LiquidityGaugePoolReward.sol
SHA3: f1a63302a0f201cb3a8d0f734072c56287b9c08be1257be3ecd9ae8e429d3e79

File: LiquidityGaugePoolState.sol
SHA3: a7c47423059a7329e0979ef9a8e5d84d2c3e785e957b8ee3451877759b2dce04

File: interfaces/ILiquidityGaugePool.sol
SHA3: 275018fb3f0a82c2ef833afed3815d82f310b8919c97dc6e00d7f695e3a970fb

www.hacken.io
25

https://github.com/neptune-mutual-blue/periphery/
https://neptunemutual.com/docs/liquidity-gauge-pools/
https://github.com/neptune-mutual-blue/periphery/tree/2bdf8814567554ffc6232c45ae2fcd3032bf9f1b#readme
https://neptunemutual.com/docs/welcome/
https://github.com/neptune-mutual-blue/periphery/tree/2bdf8814567554ffc6232c45ae2fcd3032bf9f1b#readme

